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On the discontinuous Galerkin method for the numerical
solution of the Navier–Stokes equations‡
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SUMMARY

The paper deals with the use of the discontinuous Galerkin �nite element method (DGFEM) for the
numerical solution of viscous compressible �ows. We start with a scalar convection–di�usion equation
and present a discretization with the aid of the non-symmetric variant of DGFEM with interior and
boundary penalty terms. We also mention some theoretical results. Then we extend the scheme to
the system of the Navier–Stokes equations and discuss the treatment of stabilization terms. Several
numerical examples are presented. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Our goal is to develop a su�ciently accurate and robust method for the numerical solution of
viscous compressible �ows. During the last years we have dealt with combined �nite volume
(FV)—�nite element (FE) methods which give good results in many cases of technically
relevant problems in complex domains. For analysis and applications, see, e.g., References
[1–6]. However, their drawback is the necessity to construct two mutually associated meshes,
which is rather complicated particularly in 3D, see Reference [7]. Moreover, these schemes,
which are only of the �rst order of accuracy, su�er from a high amount of numerical viscosity.
For problems with a small physical viscosity, the numerical viscosity dominates and we cannot

∗Correspondence to: V��t Dolej�s��, Department of Numerical Mathematics, Faculty of Mathematics and Physics,
Charles University Prague, Sokolovsk�a 83, Prague, 186 75, Czech Republic.

†E-mail: dolejsi@karlin.m�.cuni.cz
‡Dedicated to Professor Miloslav Feistauer on the occasion of his 60th birthday.

Contract=grant sponsor: Grant Agency of the Czech Republic; contract=grant number: 201=02=0684
Contract=grant sponsor: Grant Agency of the Czech Republic; contract=grant number: 201=00=D116
Contract=grant number: Ministry of Education of the Czech Republic; contract=grant number: MSM 113200007

Published online 4 May 2004 Received 18 November 2002
Copyright ? 2004 John Wiley & Sons, Ltd. Revised 7 March 2004



1084 V. DOLEJ�S�I

obtain satisfactory results. In order to avoid such di�culties, the application of a higher order
scheme is necessary.
One possibility is to use higher order FV schemes based on a higher order reconstruction,

e.g., TVD, ENO, WENO schemes, for their survey see References [8, 9]. An alternative ap-
proach is a discontinuous Galerkin (DG) method, which is in fact a generalization of FV
method (FVM) in the sense of Remark 3.1 in this paper. DG methods are based on piece-
wise polynomial approximations without any requirement on the interelement continuity. It
uses only one mesh and gives higher order schemes. Recently, the DG method has become
quite popular and it is discussed in a number of papers. For a survey about DG methods, see
Reference [10] or [11].
Various numerical experiments indicate that DG methods are particularly suitable for the

numerical solution of non-linear conservation laws with discontinuous solutions and non-linear
convection–di�usion problems whose solutions have steep gradients, see Reference [11]. The
use of DG method for the numerical simulation of compressible �ows is not completely new.
In 1997, Bassi and Rebay [12, 13] solved the Navier–Stokes equations with the aid of the
mixed DG method, where a solution w and its gradient ∇w are considered as independent
variables. In 1998, Lomtev et al. [14] used the DG-space discretization method to deal with
the convective part of the compressible Navier–Stokes equations and used a mixed method to
approximate the di�usive part of the equations. In 1999, Baumann and Oden [15] introduced
an hp DG �nite element (DGFE) scheme, which was applied for the compressible Euler
equations and proposed for the Navier–Stokes equations. Since the method is not a mixed
method, it results in fewer degrees of freedom per element.
In this paper, we propose a new method for the solution of the Navier–Stokes equations

which is based on the non-symmetric variant of DGFEM. The novelty of our approach
is that unlike the Baumann–Oden method, we add to the scheme interior and boundary
penalty terms. Such scheme was analysed in Reference [16] for elliptic problems. In
References [17, 18] we extended this analysis to scalar non-linear convection–di�usion prob-
lems. In Reference [19], we applied DGFEM for the numerical solution of inviscid compress-
ible �ows. Here we extend DGFEM to the solution of viscous �ows.
The contents of the paper are the following. In Section 2, we deal with the numerical

solution of a scalar convection–di�usion equation with the aid of DGFEM. We present a
numerical scheme and mention some theoretical results concerning a priori error estimates
from Reference [18]. In Section 3, we extend the numerical scheme to the systems of the
Navier–Stokes equations. In order to employ the non-symmetric variant of DGFEM for the
Navier–Stokes equations, the viscous terms have to be linear with respect to ∇w. The treatment
of stabilization di�usive terms is discussed. Several numerical examples are given in Section 4.

2. SCALAR CONVECTION–DIFFUSION EQUATION

We start with the numerical solution of a scalar equation. Following References [17, 18], we
brie�y derive a numerical scheme based on the DGFE discretization.
We use the standard notation for function spaces: Hk(�)=Sobolev space, L2(0; T ;X )=

Bochner space of square integrable functions on (0; T ) with values in a Banach space X ,
C1(0; T ;X )= space of continuously di�erentiable mappings in (0; T ) with values in X .

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:1083–1106



DISCONTINUOUS GALERKIN METHOD FOR NAVIER–STOKES EQUATIONS 1085

2.1. Continuous problem

Let �⊂Rd (d=2 or 3) be a bounded polyhedral domain and T¿0. We set QT =�× (0; T )
and by @� we denote the boundary of � which consists of two disjoint parts @�D and @�N .
We consider the following initial-boundary value problem: Find u : QT →R such that

@u
@t
+

d∑
s=1

@fs(u)
@xs

=
d∑
s=1

@Rs(u;∇u)
@xs

+ g in QT (1)

u(x; t)= uD(x) for x∈ @�D; t ∈ (0; T ) (2)

d∑
s=1
Rs(u;∇u)ns= gN for x∈ @�N ; t ∈ (0; T ) (3)

u(x; 0)= u0(x); x∈� (4)

Here x=(x1; : : : ; xd) and t denotes the space and time co-ordinates and n=(n1; : : : ; nd) is a
unit outer normal to @�. We suppose that fs ∈C1(R), Rs ∈C1(Rd+1); Rs(u; �) is linear with
respect to �∈Rd.
Let V = {v; v∈H 1(�); v|@�D =0}. We say that u is a weak solution of (1)–(4) if the

following conditions are satis�ed:

u∈L2(0; T ;H 1(�)); u∈L∞(QT ) (5a)

d
dt
(u(t); v) +

∫
�

d∑
s=1

@fs(u)
@xs

v dx +
∫
�

d∑
s=1
Rs(u;∇u) @v@xs dx −

∫
@�N
gN v dS=(g(t); v)

(5b)
for all v∈V in the sense of distributions on (0; T )

u= uD on @�D in the sense of traces (5c)

u(0)= u0 in � (5d)

By (·; ·) we denote the L2-scalar product and by u(t) the function on � such that u(t)(x)=
u(x; t), x∈�.
The existence and uniqueness of the weak solution (5a)–(5d) was shown in Reference [4]

for a special case of (1)–(4) with

d∑
s=1

@Rs(u;∇u)
@xs

= �	u (6)

and

@�N = ∅ (7)

where �¿0 is a given constant which plays a role of viscosity.
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1086 V. DOLEJ�S�I

In the following we assume that the data are su�ciently regular so that there exists of a
strong solution, i.e., a function u such that u∈L2(0; T ;Hp+1(�)) and @u=@t ∈L2(0; T ;Hp+1(�))
for some p¿1, which satis�es (1)–(4) pointwise almost everywhere.

2.2. Discretization

Let Th (h¿0) denotes a partition of the closure � of the domain � into a �nite number
of closed d-dimensional convex polyhedra K with mutually disjoint interiors. We call Th a
triangulation of �, but do not require the usual conforming properties from the �nite element
method. In 2D problems we choose usually K ∈Th as triangles or quadrilaterals. In 3D, K ∈Th
can be, e.g., tetrahedra, pyramids or hexahedra. We can allow even more general elements K .
We set hK =diam(K), h= maxK∈Th hK . By |K | we denote the d-dimensional Lebesgue

measure of K . All elements of Th will be numbered so that Th= {Ki}i∈I , where I ⊂Z+ =
{1; 2; : : :} is a suitable index set. If two elements Ki, Kj ∈Th contain a non-empty open face
which is a part of a (d − 1)-dimensional hyperplane, we call them neighbours. We set in
this case 
ij= @Ki ∩ @Kj and assume that the whole set 
ij is a part of a (d− 1)-dimensional
hyperplane. For i∈ I we set s(i)= {j∈ I ;Kj is a neighbour of Ki}.
The boundary @� is formed by a �nite number of faces of elements Ki adjacent to

@�. We denote all these boundary faces by Sj, where j∈ Ib ⊂Z−= {−1;−2; : : :} and set
�(i)= {j∈ Ib; Sj is a face of Ki}; 
ij= Sj for Ki ∈Th such that Sj ⊂ @Ki; j∈ Ib: For Ki not
containing any boundary face Sj we set �(i)= ∅. Obviously, s(i)∩ �(i)= ∅ for all i∈ I . Now,
if we write S(i)= s(i) ∪ �(i), we have

@Ki=
⋃

j∈S(i)

ij ; @Ki ∩ @�=

⋃
j∈�(i)


ij (8)

Moreover, we de�ne two subsets �D(i) and �N (i) corresponding to @�D and @�N parts of
boundary, respectively. Obviously,

�(i)= �D(i) ∪ �N (i) and �D(i)∩ �N (i)= ∅ (9)

Furthermore, we use the following notation: nij=((nij)1; : : : ; (nij)d)= unit outer normal to
@Ki on the face 
ij, d(
ij)=diam(
ij); |
ij|=(d− 1)-dimensional Lebesgue measure of 
ij.
Over the triangulation Th we de�ne the broken Sobolev space

Hk(�;Th)= {v; v|K ∈Hk(K) ∀K ∈Th} (10)

For v∈H 1(�;Th) we introduce the following notation:

v|
ij =the trace of v|Ki on 
ij
v|
ji =the trace of v|Kj on 
ji=
ij
〈v〉
ij=1

2(v|
ij + v|
ji)
[v]
ij=v|
ij − v|
ji

(11)

Obviously, 〈v〉
ij = 〈v〉
ji , but [v]
ij = − [v]
ji and [v]
ijnij=[v]
jinji.
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The approximate solution of problem (1)–(4) is sought in the space of discontinuous
piecewise polynomial functions

Sh= Sp;−1(�;Th)= {v; v|K ∈Pp(K) ∀K ∈Th} (12)

where Pp(K) denotes the space of all polynomials on K of degree 6p.
In order to derive the discrete problem, we start from a strong solution u such that

u∈L2((0; T ); H 2(�)) and @u=@t ∈L2((0; T ); H 2(�)). We multiply Equation (1) by any ’∈
H 2(�;Th), integrate over K ∈Th, apply Green’s theorem and sum over all K ∈Th. Moreover,
we use the relations 〈∇u〉
ij =∇u|
ij =∇u|
ji and the identities

∫

ij

d∑
s=1

〈Rs(u;∇’)〉 (nij)s [u] dS=0;
∫

ij
[u][’] dS=0 ∀j∈ s(i) ∀i∈ I (13)

Furthermore, adding some terms which mutually cancel, we �nd that

∫
�

@u
@t
’ dx +

∑
i∈I

{ ∑
j∈S(i)

∫

ij

d∑
s=1
fs(u) (nij)s ’|
ij dS

−
∫
Ki

d∑
s=1
fs(u)

@’
@xs

dx +
∫
Ki

d∑
s=1
Rs(u;∇u)) @’@xs dx

−∑
j∈s(i)
j¡i

∫

ij

d∑
s=1

(〈Rs(u;∇u)〉 (nij)s [’]− 〈Rs(u;∇’)〉 (nij)s [u]
)
dS

− ∑
j∈�D(i)

∫

ij

d∑
s=1
(Rs(u;∇u) (nij)s ’− Rs(u;∇’)(nij)s (u− uD)) dS

+
∑
j∈s(i)

∫

ij
�[u] [’] dS +

∑
j∈�D(i)

∫

ij
� (u− uD)’ dS

}

=
∫
�
g’ dx +

∑
i∈I

∑
j∈�N (i)

∫

ij
gN ’ dS (14)

Here � is a weight function de�ned on each 
ij by �|
ij = �=d(
ij), where � ≈ Rs. Let us
note that form (14) represents a non-symmetric variant of DGFEM since the stabilization
terms

∑
j∈s(i)
j¡i

∫

ij

d∑
s=1

〈Rs(u;∇u)〉 (nij)s[’] dS

∑
j∈s(i)
j¡i

∫

ij

d∑
s=1

〈Rs(u;∇’)〉 (nij)s [u] dS
(15)
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and ∑
j∈�D(i)

∫

ij

d∑
s=1
Rs(u;∇u)(nij)s’ dS

∑
j∈�D(i)

∫

ij

d∑
s=1
Rs(u;∇’)(nij)su dS

(16)

have opposite signs. This stabilization technique was proposed in References [15, 20] for
di�usion and convection–di�usion problems, respectively, and studied in Reference [21]. The
advantage of this approach is that the corresponding di�usive bilinear form has a favourable
coercivity property, see the analysis in References [18, 20, 21].
The adding the interior penalty terms

∫

ij
�[u][’] dS; j∈ s(i) arises from the observation

that just as Dirichlet boundary conditions can be imposed weakly instead of being built into
the �nite element space as in Reference [22], so interelement continuity could be obtained in
a similar fashion. Terms

∫

ij
�[u][’] dS; j∈ �D(i) represents the boundary penalty introduced

in Reference [22].
The non-symmetric variant of DGFEM with interior and boundary penalty terms was anal-

ysed in Reference [16] for elliptic problems and in Reference [18] we extended this analysis
to non-linear convection–di�usion problems.
Similarly as in FVM the inviscid �uxes will be approximated with the aid of the so-called

numerical �ux H (u; u′; n):

∫

ij

d∑
s=1
fs(u) ns’ dS ≈

∫

ij
H (u|
ij ; u|
ji ; nij)’ dS; i∈ I; j∈ S(i) (17)

Of course, if j∈ �(i) and 
ij ⊂ @�, it is necessary to specify the meaning of u|
ji . Here
we use the extrapolation, i.e. we put u|
ji := u|
ij . In this way we obtain the convection
form:

bh(uh; ’h) =
∑
i∈I

( ∑
j∈s(i)

∫

ij
H (uh|
ij ; uh|
ji ; nij)’h|
ij dS

+
∑
j∈�(i)

∫

ij
H (uh|
ij ; uh|
ij ; nij)’h|
ij dS

−∑
i∈I

∫
Ki

d∑
s=1
fs(uh)

@’h
@xs

dx

)
; uh; ’h ∈H 2(�;Th) (18)

Now, for uh; ’h ∈H 2(�;Th) we de�ne the forms

ah(uh; ’h) =
∑
i∈I

{∫
Ki

d∑
s=1
Rs(uh;∇uh)) @’h@xs dx

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:1083–1106



DISCONTINUOUS GALERKIN METHOD FOR NAVIER–STOKES EQUATIONS 1089

−∑
j∈s(i)
j¡i

∫

ij

d∑
s=1
(〈Rs(uh;∇uh)〉(nij)s[’h]− 〈Rs(uh;∇’h)〉(nij)s[uh])dS

− ∑
j∈�D(i)

∫

ij

d∑
s=1
(Rs(uh;∇uh)(nij)s’h − Rs(uh;∇’h)(nij)suh) dS

}
(19)

Jh(uh; ’h) =
∑
i∈I

{ ∑
j∈s(i)

∫

ij
�[uh][’h] dS +

∑
j∈�D(i)

∫

ij
�uh’h dS

}
(20)

‘h(’h)(t) =
∫
�
g(t)’h dx +

∑
i∈I

{ ∑
j∈�N (i)

∫

ij
gN’h dS

+
∑

j∈�D(i)

∫

ij

d∑
s=1
(Rs(u;∇’h)(nij)suD(t) + �uD(t)’h) dS

}
(21)

(�; �) =
∫
�
�� dx (22)

By u(t) we denote the function on � such that u(t) (x)= u(x; t); x∈�. As Sh ⊂H 2(�;Th) the
previous forms have sense as well as for uh; ’h ⊂ Sh. Then we formulate the discrete problem:
We de�ne an approximate solution as a function uh satisfying the conditions,

uh ∈C1([0; T ]; Sh) (23a)

(
@uh(t)
@t

; ’h

)
+ bh(uh(t); ’h) + ah(uh(t); ’h) + Jh(uh(t); ’h)= ‘h(’h)(t)

(23b)

∀’h ∈ Sh ∀ t ∈ (0; T )

uh(0)= u0h (23c)

where u0h is an Sh-approximation of u
0 (e.g. L2-projection).

We have carried out the semidiscretization in space (called the method of lines)
leading to a system of ordinary di�erential equations. In practical computations suitable
time discretization is applied (Euler forward or backward scheme, Runge–Kutta methods or
discontinuous Galerkin time discretization) and integrals are evaluated with the aid of
numerical integration. The simplest time discretization is the Euler forward scheme.
However, it su�ers from a rather restrictive time step limitation due to a CFL-stability
condition. Quite popular is therefore a semiimplicit scheme, in which the non-linear
convective terms are treated explicitly, whereas the di�usion terms are approximated in an
implicit way.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:1083–1106
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2.3. Numerical analysis

In Reference [18], we investigate problem (1)–(4) with (6)–(7). Using some assumptions
for triangulation and the numerical �ux, we derive an a priori error estimation for the
error

eh ≡ uh − u (24)

where u is the exact solution of (1)–(4), (6), (7) and uh is its approximate solution given
by (23).

Assumptions (T)
Let us consider a system {Th}h∈(0;h0), h0¿0, of partitions of the domain � (Th= {Ki}i∈Ih ; Ih ⊂
Z+) and assume that it has the following properties:
(T1) Each element K ∈Th; h∈ (0; h0) is star-shaped with respect to at least one point xK ∈K .

We assume that

(i) there exists a constant �¿0 independent of K and h such that

maxx∈@K |x − xK |
minx∈@K |x − xK |6� ∀K ∈Th; h∈ (0; h0) (25)

(ii) element K has piecewise smooth Lipschitz boundary and K can be divided into a
�nite number of simplex

K =
⋃

S∈S(K)
S (26)

there exists a positive constant c1 such that

hS
�S
6c1 ∀S ∈S(K) (shape regularity) (27)

where hS is the diameter of S, �S is the radius of the largest d-dimensional ball
inscribed into S and moreover

0¡
1
�̃
6
hK
hS
6�̃¡∞ ∀S ∈S(K) (28)

where hK is the diameter of K and �̃ is a constant independent of K and h.

(T2) There exists a constant c2¿0 such that

hKi6c2d(
ij); i∈ I; j∈ S(i); h∈ (0; h0) (29)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:1083–1106
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Assumptions (T) admit very general elements, e.g. triangles, quadrilaterals, polygons, non-
convex elements and also elements not satisfying the usual conforming properties from the
�nite element method (elements with handing nodes). These assumptions guarantee the validity
of the multiplicative trace theorem and the inverse inequality, which are fundamental for the
numerical analysis in Reference [18].

Assumptions (H)

(1) H (u; v; n) is de�ned in Rd ×S1, where S1 = {n∈Rd; |n|=1}, and Lipschitz-continuous
with respect to u; v:

|H (u; v; n)−H (u∗; v∗; n)|6c3(|u− u∗|+ |v− v|∗)

u; v; u∗; v∗ ∈R; n∈S1 (30)

(2) H (u; v; n) is consistent:

H (u; u; n)=
d∑
s=1
fs(u) ns; u∈R; n=(n1; : : : ; nd)∈S1 (31)

(3) H (u; v; n) is conservative:

H (u; v; n)=−H (v; u;−n); u; v∈R; n∈S1 (32)

Now, we formulate the main theoretical result:

Theorem 2.1
Let assumptions (T ) and (H) be satis�ed. Let u be the exact strong solution of
problem (1)–(4), (6), (7) satisfying

u∈L2(0; T ;Hp+1(�));
@u
@t

∈L2(0; T ;Hp+1(�)) (33)

where the integer number p¿1 is a given degree of approximation. Let uh be the approximate
solution de�ned by (23). Then the error eh= uh − u satis�es the estimate

sup
t∈[0;T ]

‖eh(t)‖2L2(�) + �
∫ T

0
(|eh(#)|2H 1(�;Th) + J �h (eh(#); eh(#))) d#

+C1(1 + �)
∫ T

0

{
exp
(
C1
1 + �
�
(T − #)

)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:1083–1106



1092 V. DOLEJ�S�I

×
[∫ #

0
(|eh(�)|2H 1(�;Th) + J �h (eh(�); eh(�))) d�

]}
d#

62h2p
{(

C4(�2 + h2)
�

+ c2 + �C3

)
exp
(
C1
1 + �
�
T
)
+ C2

}
(34)

with constants C1; : : : ; C4¿0 independent of h and � and c2 is the constant from (29).

Proof
See Reference [18].

Remark 2.2
This error estimate is not optimal as we have only �rst order of convergence for piece-
wise linear approximation (p=1). On the other hand, the numerical examples carried out in
Reference [18] gives the computational order of convergence equal to 2 for p=1.

3. SYSTEM OF THE NAVIER–STOKES EQUATIONS

In this section, we extend the approach explained above to the system of equations, particularly
to the compressible Navier–Stokes equations. For simplicity, we shall consider 2-dimensional
problems, i.e. we assume that d=2.

3.1. Governing equations

Let �⊂R2 be a bounded domain and T¿0. We set QT =�× (0; T ) and by @� denote the
boundary of � which consists of several disjoint parts. We distinguish inlet 
I, outlet 
O
and impermeable walls 
W on @�. The system of the compressible Navier–Stokes equations
describing 2D viscous �ow can be written in the dimensionless form

@w
@t
+

2∑
s=1

@fs(w)
@xs

=
2∑
s=1

@Rs(w;∇w)
@xs

in QT (35)

where

w=(w1; : : : ; w4)T = (�; �v1; �v2; e)T (36)

is the so-called state vector,

fs(w) = (f(1)s (w); : : : ; f(4)s (w))T

= (�vs; �vsv1 + �s1p; �vsv2 + �s2p; (e+ p)vs)T; s=1; 2 (37)

are the so-called inviscid (Euler) �uxes and

Rs(w;∇w) = (R(1)s (w;∇w); : : : ; R(4)s (w;∇w))T

=
(
0; 	s1; 	s2;

2∑
k=1
	skvk +

�
Re Pr

@

@xs

)T
; s=1; 2 (38)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:1083–1106
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are the so-called viscous �uxes. We consider the Newtonian type of �uid, i.e. the viscous part
of the stress tensor has the form

	sk =
1
Re

[(
@vs
@xk

+
@vk
@xs

)
− 2
3
div(v)�sk

]
; s; k=1; 2 (39)

We use the following notation: �—density, p—pressure, e—total energy, v=(v1; v2)—velocity,

—temperature, �—Poisson adiabatic constant, Re—Reynolds number, Pr—Prandtl number.
In order to close the system, we consider the following thermodynamical relations: the state

equation for perfect gas and the relation for total energy,

p=(�− 1)(e − �|v|2=2); e= cV�
+ �|v|2=2 (40)

where cV is the speci�c heat at constant volume which is equal to one in the dimensionless
case. System (35)–(40) is hyperbolic-parabolic type. It is equipped with the initial condition

w(x; 0)=w0(x); x∈� (41)

and the following set of boundary conditions on appropriate parts of boundary:

�=�D; v= vD;
2∑
k=1

(
2∑
l=1
	lknl

)
vk +

�
Re Pr

@

@n
=0 on 
I (42a)

2∑
k=1
	sknk =0; s=1; 2;

@

@n
=0 on 
O (42b)

v=0;
@

@n
=0 on 
W (42c)

where �D and vD are given function and n=(n1; n2) is a unit outer normal to @�. Another
possibility is to replace the adiabatic boundary condition (42c) by

v=0; 
= 
D on 
W (43)

The problem to solve the compressible Navier–Stokes equations, equipped with the above
initial and boundary conditions will be denoted by (CFP) (compressible �ow problem).
The viscous terms Rs(w;∇w) can be expressed in the form

Rs(w;∇w)=
2∑
k=1
Ksk(w)

@w
@xk
; s=1; : : : ; 2 (44)

where Ksk are 2× 2 matrices dependent on w, see, e.g. Reference [23].

3.2. DGFE formulation

In the discretization of (CFP) we proceed in a similar way as in Section 2.2. The approximate
solution wh as well as test functions ’h are elements of the �nite dimensional space of vector-
valued functions

Sh= S4h (45)
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where Sh= Sp;−1(�;Th) is introduced in (12). By �D(i) we now denote the index set of
j∈ �(i) where the Dirichlet boundary condition is prescribed on the face 
ij ⊂ @� for at least
one component of w.
Assuming that w is a classical su�ciently regular solution of (CFP) and ’∈H 2(�;Th)4,

we multiply Equation (35) by ’, integrate over Ki ∈Th, apply Green’s theorem, sum over all
Ki ∈Th and arrive at the identity

∫
�

@w
@t

· ’ dx +∑
i∈I

{ ∑
j∈s(i)

∫

ij

2∑
s=1
fs(w) (nij)s · ’|
ijdS

−
∫
Ki

2∑
s=1
fs(w) · @’

@xs
dx +

∫
Ki

2∑
s=1
Rs(w;∇w) · @’

@xs
dx

−∑
j∈s(i)
j¡i

∫

ij

2∑
s=1

〈Rs(w;∇w)〉 (nij)s · [’] dS

− ∑
j∈�(i)

∫

ij

2∑
s=1
Rs(w;∇w)(nij)s · ’ dS

}
=0 (46)

The extension of DGFEM from the scalar equation to the Navier–Stokes system is not
quite straightforward. It is caused by the fact that the viscous (i.e. di�usion) terms Rs are
non-linear. Therefore, it is not possible to construct additional viscous (di�usion) terms as in
(15) and (16) by a simple exchange of w and ’, because the resulting form would not be
linear with respect to the test functions ’. This problem is overcome by a partial linearization
of the viscous �uxes Rs. We consider two possibilities of the partial linearization of Rs.
Representations (44) of Rs; s=1; 2 are already linear with respect to ∇w. This leads us to

adding the following stabilization terms to the left-hand side of (46) (compare with (14)):

∑
i∈I


 ∑

j∈s(i)
j¡i

∫

ij

2∑
s=1

〈
2∑
k=1
Ksk(w)

@’
@xk

〉
(nij)s · [w] dS

+
∑

j∈�D(i)

∫

ij

2∑
s=1

2∑
k=1
Ksk(w)

@’
@xk
(nij)s · (w− wB)dS


 (47)

where Ksk ; s; k=1; 2 were introduced in (44) and wB is a boundary state vector speci�ed later.
However, the numerical experiments indicate, that DGFE scheme with the stabilization terms
(47) is not stable. It is caused by the fact that whereas all di�usive terms in (46) are equal to
zero for ’=(’1; 0; 0; 0); ’1 �=0; ’1 ∈ H 2(�;Th) that the terms (47) are non-zero. Our goal
is to replace (47) by stabilization terms which are linear with respect to ’=(’1; : : : ; ’4) but
independent of ∇’1.
This partial linearization of the viscous terms Rs(w;∇w) is obtained by the di�erentia-

tion inside the de�nition of Rs(w;∇w). Replacing the physical quantities �, v and 
 by the
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components of the state vector w we have from (36), (38) and (39)

R1(w;∇w)=




0

2
3
1
Re

(
2 @
@x1

(
w2
w1

)
− @

@x2

(
w3
w1

))
1
Re

(
@
@x1

(
w3
w1

)
+ @

@x2

(
w2
w1

))
w2
w1
R(2)1 + w3

w1
R(3)1 + �

Re Pr
@
@x1

(
w4
w1

− 1
2w21
(w22 + w

2
3)
)




(48)

where R(2)1 and R(3)1 are the second and third component of R1(w;∇w), respectively, and

R2(w;∇w)=




0

1
Re

(
@
@x1

(
w3
w1

)
+ @

@x2

(
w2
w1

))
2
3
1
Re

(
2 @
@x2

(
w3
w1

)
− @

@x1

(
w2
w1

))
w2
w1
R(2)2 + w3

w1
R(3)2 + �

Re Pr
@
@x2

(
w4
w1

− 1
2w21
(w22 + w

3
3)
)




(49)

where R(2)2 and R(3)2 are the second and third component of R2(w;∇w), respectively. Performing
the chain rule in the terms Rs; s=1; 2 we have

R1(w;∇w)=




0

2
3

1
Rew1

[
2
(
@w2
@x1

− w2
w1

@w1
@x1

)
−
(
@w3
@x2

− w3
w1
@w1
@x2

)]
1

Rew1

[(
@w3
@x1

− w3
w1
@w1
@x1

)
+
(
@w2
@x2

− w2
w1
@w1
@x2

)]
w2
w1
R(2)1 + w3

w1
R(3)1 + �

Re Pr
1
w1

×
[
@w4
@x1

− w4
w1
@w1
@x1

− 1
w1

(
w2 @w2@x1 + w3

@w3
@x1

)
+ 1

w21
(w22 + w

2
3)
@w1
@x1
)
]




(50)

and

R2(w;∇w)=




0

1
Rew1

[(
@w3
@x1

− w3
w1

@w1
@x1

)
+
(
@w2
@x2

− w2
w1
@w1
@x2

)]
2
3

1
Re w1

[
2
(
@w3
@x2

− w3
w1

@w1
@x2

)
−
(
@w2
@x1

− w2
w1

@w1
@x1

)]
w2
w1
R(2)2 + w3

w1
R(3)2 + �

Re Pr
1
w1

×
[
@w4
@x2

− w4
w1
@w1
@x2

− 1
w1

(
w2 @w2@x2 + w3

@w3
@x2

)
+ 1

w21
(w22 + w

2
3)
@w1
@x2

]




(51)
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Now for w=(w1; : : : ; w4)T and ’=(’1; : : : ; ’4)T we de�ne the vector-valued functions

D1(w;∇w;’;∇’)

≡




0

2
3

1
Rew1

[
2
(
@’2
@x1

− ’2
w1

@w1
@x1

)
−
(
@’3
@x2

− ’3
w1
@w1
@x2

)]
1

Rew1

[(
@’3
@x1

− ’3
w1

@w1
@x1

)
+
(
@’2
@x2

− ’2
w1
@w1
@x2

)]
w2
w1
D(2)1 + w3

w1
D(3)1 + �

Re Pr
1
w1

×
[
@’4
@x1

− ’4
w1

@w1
@x1

− 1
w1

(
w2 @’2@x1 + w3

@’3
@x1

)
+ 1

w21
(w2’2 + w3’3) @w1@x1 )

]




(52)

and

D2(w;∇w;’;∇’)

≡




0

1
Rew1

[(
@’3
@x1

− ’3
w1
@w1
@x1

)
+
(
@’2
@x2

− ’2
w1
@w1
@x2

)]
2
3

1
Re w1

[
2
(
@’3
@x2

− ’3
w1

@w1
@x2

)
−
(
@’2
@x1

− ’2
w1

@w1
@x1

)]
w2
w1
D(2)2 + w3

w1
D(3)2 + �

Re Pr
1
w1

×
[
@’4
@x2

− ’4
w1

@w1
@x2

− 1
w1

(
w2 @’2@x2 + w3

@’3
@x2

)
+ 1

w21
(w2’2 + w3’3) @w1@x2

]




(53)

where D(2)s ; D
(3)
s ; s=1; 2 are the second and third components of Ds(w;∇w;’;∇’), respec-

tively. Obviously, the forms Ds are consistent with Rs, i.e.
Ds(w;∇w;w;∇w)=Rs(w;∇w) ∀w; s=1; 2 (54)

Further, the forms Ds(w;∇w;’;∇’); s=1; 2 are linear with respect ’ and ∇’ and therefore
they satisfy the assumption of linearity as the forms Rs(u; �); s=1; 2 from the scalar case (1)
and (4). Finally, the forms Ds; s=1; 2 are independent of ∇’1.
Similarly as in the scalar case, we arrive at the de�nition of the following forms (compare

with (18)–(21)):

ah(w;’) =
∑
Ki∈Th

{∫
Ki

2∑
s=1
Rs(w;∇w) · @’

@xs
dx

+
∑
j∈s(i)
j¡i

∫

ij

2∑
s=1
(〈Ds(w;∇w;w;∇w)〉(nij)s · [’]

−〈Ds(w;∇w;’;∇’)〉 (nij)s · [w]) dS
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+
∑

j∈�D(i)

∫

ij

2∑
s=1
(Ds(w;∇w;w;∇w)(nij)s · ’dS

− Ds(w;∇w;’;∇’)(nij)s · (w− wB)) dS
}

(55)

(di�usion form),

b̃h(w;’)=
∑
i∈I

{ ∑
j∈S(i)

∫

ij

2∑
s=1
fs(w)ns · ’ dS −

∫
Ki

2∑
s=1
fs(w) · @’

@xs
dx

}
(56)

(convective form), and

Jh(w;’)=
∑
Ki∈Th


 ∑j∈s(i)

j¡i

∫

ij
�[w] · [’] dS + ∑

j∈�D(i)

∫

ij
�(w− wB) · ’ dS


 (57)

(interior and boundary penalty terms). The stabilization parameter � is chosen as �|
ij =
(|
ij|Re)−1.
The set �D(i) contains edges where the Dirichlet boundary condition is given for at least

one component of w=(w1; : : : ; w4), i.e. edges lying on 
I or 
W. We prescribe the boundary
state wB = ((wB)1; : : : ; (wB)4) by

(wB)r =



(wD)r if wr is prescribed on @�

wr otherwise r=1; : : : ; 4 (58)

In particular, for the case (42a)–(42c) we have

wB=(�|
W ; 0; 0; �|
W
|
W) on 
W

wB=(�D; �D(vD)1; �D(vD)2; �|
I
|
I + 1
2 �D|vD|2) on 
I

(59)

and for the case (42a), (42b), (43)

wB=(�|
W ; 0; 0; �|
W
D) on 
W

wB=
(
�D; �D(vD)1; �D(vD)2; �|
I
|
I +

1
2
�D|vD|2

)
on 
I

(60)

where �D; vD and 
D are given functions from the boundary conditions (42)–(43) and �|

and 
|
 are the values of density and temperature extrapolated from interior of � on the
appropriate boundary part 
, respectively.
Let w(t) denotes the function on � such that w(t) (x)=w(x; t), x∈�. Then with the aid

of (46), (55)–(57) the DGFE formulation for the Navier–Stokes equations reads

d
dt
(w(t);’)= ah(w(t);’) + b̃h(w(t);’) + Jh(w(t);’)

(61)
w(t);’∈H 2(�;Th)4; t ∈ (0; T )
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Relation (61) represents a weak form of the Navier–Stokes equations in the sense of the
broken Sobolev space introduced in (10).

3.3. Numerical solution

In order to proceed from (61) to the numerical scheme for the system of equations, we
use the same strategy as for the scalar equation in Section 2.2. Relation (61) has sense for
wh(t);’h ∈Sh; t ∈ (0; T ).
The boundary integrals in (56) are approximated by the approach common in the FVM:

∫

ij

2∑
s=1
fs(wh(t)) ns’h dS ≈

∫

ij
H(wh|
ij(x; t);wh|
ji(x; t); nij(x))’h|
ij(x)dS (62)

where H is the numerical �ux, w|
ij(x; ·) and w|
ji(x; ·) are the values of w at x∈
ij considered
from interior and exterior of Ki, respectively. We use the numerical �ux based on the direct
solution of the local Riemann problem, see References [24, 25].
If 
ij ⊂ @�h, then there is no neighbour Kj of Ki adjacent to 
ij and the values of wh|
ji

must be determined on the basis of ‘inviscid’ boundary conditions. We put v ·n=0 on 
W and
on 
I and 
O we consider the boundary conditions in such a way that the linearized system
of the Euler equations is well-posed. It means that we prescribe mn components of w, and
the other components are extrapolated from interior of �. Here mn is the number of negative
eigenvalues of the Jacobi matrix

2∑
s=1

Dfs(w)
Dw

ns (63)

For more detail see References [23, 25, 26].
Then the convective form b̃h is approximated by

bh(w;’)=
∑
i∈I

{ ∑
j∈S(i)

∫

ij
H(w|
ij ;w|
ji ; nij) · ’ dS −

∫
Ki

2∑
s=1
fs(w) · @’

@xs
dx

}
(64)

Now we are ready to de�ne the DGFE numerical solution of the Navier–Stokes equations.
We say that wh is an approximate solution of (61), if it satis�es the conditions

wh ∈C1([0; T ];Sh) (65a)

d
dt
(wh(t);’h) = ah(wh(t);’h) + bh(wh(t);’h) + Jh(wh(t);’h)

(65b)
∀’h ∈Sh ∀ t ∈ (0; T )

wh(0)=w0h (65c)

Relations (65) represent a system of ordinary di�erential equations which can be solved by
a suitable numerical method.
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Remark 3.1
If the viscous �ow e�ects are negligible (Re→ ∞) then ah ≡ 0 and Jh ≡ 0. Therefore (65b)
reads to DGFE scheme for the Euler equations

d
dt
(wh(t);’h) = bh(wh(t);’h) ∀’h ∈Sh ∀ t ∈ (0; T ) (66)

For a piecewise constant approximation (p=0 in (45)) scheme (66) is identical with the FVM
for the Euler equations. From this point of view we can consider DGFEM as a generalization
of FVM.

3.4. Implementation

The numerical computations in this paper were realized over regular triangular grids with the
aid of piecewise linear approximations. Based on the numerical examples carried out in Refer-
ence [18] for a scalar non-linear convection–di�usion equation and the results from Reference
[27] where DGFEM was applied for the inviscid �ow simulation, we deduce that (65) is a
second order method. A comparison of DGFEM with a �rst order scheme in Reference [28]
underlines this assertion.
We use the basis of Sh := S1;−1 whose components are piecewise linear functions associated

with midpoints of sides of triangles:

{�ij ∈ Sh;�ij(Qkl)= �ik�jl; j∈ S(i); l∈ S(k); i; k ∈ I} (67)

where Qkl is the midpoint of 
kl. This choice leads to a diagonal mass matrix in (65b). For
the evaluation of boundary integrals in (55), (57) and (64), we use the two point Gauss
quadrature rule ∫ 1

−1
g(t) dt ≈ g

(
− 1√

3

)
+ g
(
1√
3

)
(68)

which is exact for polynomials of the third degree. The volume integrals in (55) and (64)
are evaluated by the three point integration rule∫

Ki
g(x) dx ≈ |Ki|13

∑
j∈S(i)

g(Qij) (69)

which is exact for second degree polynomials.
The systems of ordinary di�erential equations (65) can be solved by the two steps Runge–

Kutta method which guarantees the accuracy with respect to the time co-ordinate. However, the
use of the explicit scheme requires a restriction on a time step. Based on heuristic consideration
and a number of numerical experiments we use the stability condition in the form

	t=
1
3
CFL min

(
1
2
max
Ki∈Th
j∈S(i)

( |Ki|
�ij|
ij|

)
;
1
8
max
Ki∈Th

Re
|Ki|

)
(70)

where we put usually CFL=0:4 and �ij is the maximal eigenvalue of the Jacobi matrix (63)
evaluated over 
ij.
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As the stability condition (70) is too restrictive the better approach is to use a suitable
scheme for sti� systems. We employ CVODE code [29] which is based on a backward
di�erential formula (BDF) method where the system of non-linear equations is solved by a
Newton method. The Jacobi matrix for Newton iterations is computed numerically.
In some cases the numerical solutions su�er from the so-called Gibbs e�ect, i.e. there are

some overshoots and undershoots of a numerical solutions in vicinity of discontinuities (e.g.
shock waves). In order to avoid this e�ect, an order limiting has to be applied. We use
the order limiting based on the check of interelement jumps of the solution, see Reference
[30]. Moreover, in order to obtain physically relevant solution near non-polygonal parts of
boundary, we employ superparametric �nite elements for triangles adjacent to a curved parts
of boundary, see Reference [19].

4. NUMERICAL EXAMPLES

We present several examples demonstrating the e�ciency of DGFEM for the numerical sim-
ulation of compressible �ows. We applied the time stabilization method in order to obtain
steady state solutions. The used triangular grid were obtained by the anisotropic mesh adap-
tation method (AMA), see References [31, 32]. The visualized isolines and distributions of
quantities along boundaries are plotted without any postprocessing. Since we use a piecewise
linear approximation, then isolines and distributions of the pressure coe�cient are piecewise
linear while distributions of skin friction coe�cient are piecewise constant.

 0

 0.02

 0.04

 0.06

 0.08

0.1

0.12

 0  0.2  0.4  0.6 0.8  1

’Blasius’
’P_1’

’Blasius’
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0.001
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0.1

 0.01  0.1  1

Figure 1. Distribution of the computed skin friction coe�cient (P 1) with the ‘theoretical’ one (Blasius).
The left and right �gures are plotted in linear and logarithmic scaling, respectively.
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Figure 2. Triangulation (left) and the corresponding Mach number isolines (right) around
NACA0012 pro�le (M =0:85, �=0◦, Re=500).

Figure 3. Details of the Mach number isolines around the leading edge (left) and trailing edge (right)
of NACA0012 pro�le (M =0:85, �=0◦, Re=500).

Example 1
We consider the laminar �ow on the adiabatic �at plate characterized by a freestream Mach
number M =0:3 and by a Reynolds number Re=104. The computation has been performed
on a unstructured grid having 3781 elements which was adaptive re�ned along the �at.
Figure 1 shows the comparison of the computed skin friction coe�cient cf with the ‘the-
oretical’ one which is given by the well-known Blasius formula for the cf distribution along
a �at plate for incompressible �ow. The right �gure represents the distribution plotted in
logarithmic scale. The computed results show good agreement with the Blasius solution.

Example 2
In the following examples we solve laminar viscous �ows around the NACA0012 pro�le. In
order to avoid the in�uence of an arti�cial external boundary we choose the computational
domain � with diameter 20 times larger then the diameter of the pro�le.
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Figure 4. Distributions of the pressure coe�cient (left) and skin friction coe�cient (right)
along NACA0012 pro�le (M =0:85, �=0◦, Re=500).

Figure 5. Triangulation (left) and the corresponding Mach number isolines (right) around
NACA0012 pro�le (M =2, �=10◦, Re=500).

The second example is a �ow around the pro�le NACA0012 at free stream Mach number
M =0:85, an angle of attack �=0◦, Reynolds number Re=500, and wall temperature is equal
to the freestream total temperature.
Figure 2 show the �nal triangulation obtain by AMA technique and the corresponding Mach

number isolines (right). The details of Mach number isolines around the trailing and leading
edges are shown in Figure 3. The pressure and skin friction distributions along the pro�le
are plotted in Figure 4. Our computed value the drag coe�cient is cD =0:2281 whereas the
reference value from Reference [33] is cD =0:2230.
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Figure 6. Distributions of the pressure coe�cient (left) and skin friction coe�cient (right)
along NACA0012 pro�le (M =2, �=10◦, Re=500).

Figure 7. Triangulation (left) and the corresponding Mach number isolines (right) around
NACA0012 pro�le (M =0:5, �=0◦, Re=5000).

Example 3
In this example we consider a supersonic �ow at free stream Mach number M =2, an angle
of attack �=10◦, Reynolds number Re=500 and wall temperature is equal to the freestream
total temperature. A characteristic feature of this �ow problem is the presence of a detached
bow shock wave in front of the pro�le. Figure 5 show the �nal triangulation obtain by AMA
technique and the corresponding Mach number isolines (right). A sharp resolution of the bow
shock wave is easily observed. The pressure and skin friction distributions along the pro�le
are plotted in Figure 6. The computed values the drag and lift coe�cients are cD =0:2312
and cL =0:3738, respectively.

Example 4
The last example is a �ow around the pro�le NACA0012 at free stream Mach number M =0:5,
an angle of attack �=0◦, and Reynolds number Re=5000. The walls of the pro�le are
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Figure 8. Details of the Mach number isolines around the leading edge (left) and trailing
edge (right) of NACA0012 pro�le (M =0:5, �=0◦, Re=5000).
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Figure 9. Distributions of the pressure coe�cient (left) and skin friction coe�cient (right)
along NACA0012 pro�le (M =0:5, �=0◦, Re=5000).

adiabatic. The Reynolds number is near to the upper limit for steady laminar �ow. A charac-
teristic feature of this �ow problem is the separation of the �ow occurring near to the trailing
edge.
Figure 7 show the �nal triangulation obtain by AMA technique and the corresponding Mach

number isolines (right). The details of Mach number isolines around the trailing and leading
edges are shown in Figure 8. The pressure and skin friction distributions along the pro�le are
plotted in Figure 9. Table I shows the computed values the pressure part (cD; p) and viscous
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Table I. Computed values of cD; p, cD; v and cD by the pre-
sented DGFEM in comparison with [12, 33], piecewise linear (P1),

quadratic (P2) and cubic approximation (P3).

Method cD; p cD; p cD

DGFEM 0.02309 0.03113 0.05422
[33] 0.02281 0.03246 0.05527
[12]-P1 0.01963 0.03051 0.05014
[12]-P2 0.01991 0.03361 0.05352
[12]-P3 0.02208 0.03303 0.05511

part (cD; v) of the drag coe�cient in comparison with reference values from References [12, 33]
where piecewise linear, quadratic and cubic DG approximation were applied. We observe good
agreement with the reference results.

5. CONCLUSION

We present a new e�cient numerical method for the solution of the compressible Navier–
Stokes equations. The scheme presented is based on the discontinuous Galerkin �nite ele-
ment method with non-symmetric treatment of di�usive stabilization terms and interior and
boundary penalty. A special form of stabilization terms has been proposed and success-
fully tested. Several numerical examples demonstrate an accuracy and robustness of the
method.
We implemented a piecewise linear approximation on unstructured triangular grids. An

interesting observation is the following fact: although a discontinuous approximation is em-
ployed, the numerical solution looks continuous (i.e. interelement jumps are not visible) in
subdomains where the solution is smooth. Work is in progress to implement a piecewise
quadratic and cubic approximation and to simulate non-steady problems.
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